Local well-posedness of a dispersive Navier-Stokes system

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Well-posedness of a Dispersive Navier-stokes System

A. We establish local well-posedness and smoothing results for the Cauchy problem of a degenerate dispersive Navier-Stokes system that arises from kinetic theory. Under assumptions that the initial data satisfy asymptotic flatness and nontrapping conditions, we show there exists a unique classical solution for a finite time. Due to degeneracies in both dissipation and dispersion for the ...

متن کامل

Well-posedness for the Navier-Stokes equations

where u is the velocity and p is the pressure, with inital data u(x, 0) = u0(x). Existence of weak solutions has been shown by Leray. Uniqueness (and regularity) of weak solutions is unknown and both are among the major open questions in applied analysis. Under stronger assumptions there exist local and/or global smooth solutions. One version of this has been shown by Kato for initial data in L...

متن کامل

Global Well-posedness of Compressible Bipolar Navier–Stokes–Poisson Equations

We consider the initial value problem for multi-dimensional bipolar compressible Navier– Stokes–Poisson equations, and show the global existence and uniqueness of the strong solution in hybrid Besov spaces with the initial data close to an equilibrium state.

متن کامل

Well-posedness and qualitative behaviour of solutions for a two-phase Navier-Stokes-Mullins-Sekerka system

We consider a two-phase problem for two incompressible, viscous and immiscible fluids which are separated by a sharp interface. The problem arises as a sharp interface limit of a diffuse interface model. We present results on local existence of strong solutions and on the long-time behavior of solutions which start close to an equilibrium. To be precise, we show that as time tends to infinity, ...

متن کامل

Well-Posedness of a Fully Coupled Navier-Stokes/Q-tensor System with Inhomogeneous Boundary Data

We prove short-time well-posedness and existence of global weak solutions of the Beris–Edwards model for nematic liquid crystals in the case of a bounded domain with inhomogeneous mixed Dirichlet and Neumann boundary conditions. The system consists of the Navier-Stokes equations coupled with an evolution equation for the Q-tensor. The solutions possess higher regularity in time of order one com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indiana University Mathematics Journal

سال: 2011

ISSN: 0022-2518

DOI: 10.1512/iumj.2011.60.4179